4 research outputs found

    Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism

    Get PDF
    We describe a general procedure to generate spinning, precessing waveforms that include inspiral, merger and ringdown stages in the effective-one-body (EOB) approach. The procedure uses a precessing frame in which precession-induced amplitude and phase modulations are minimized, and an inertial frame, aligned with the spin of the final black hole, in which we carry out the matching of the inspiral-plunge to merger-ringdown waveforms. As a first application, we build spinning, precessing EOB waveforms for the gravitational modes l=2 such that in the nonprecessing limit those waveforms agree with the EOB waveforms recently calibrated to numerical-relativity waveforms. Without recalibrating the EOB model, we then compare EOB and post-Newtonian precessing waveforms to two numerical-relativity waveforms produced by the Caltech-Cornell-CITA collaboration. The numerical waveforms are strongly precessing and have 35 and 65 gravitational-wave cycles. We find a remarkable agreement between EOB and numerical-relativity precessing waveforms and spins' evolutions. The phase difference is ~ 0.2 rad at merger, while the mismatches, computed using the advanced-LIGO noise spectral density, are below 2% when maximizing only on the time and phase at coalescence and on the polarization angle.Comment: 17 pages, 10 figure

    Suitability of hybrid gravitational waveforms for unequal-mass binaries

    Get PDF
    This article studies sufficient accuracy criteria of hybrid post-Newtonian (PN) and numerical relativity (NR) waveforms for parameter estimation of strong binary black-hole sources in second- generation ground-based gravitational-wave detectors. We investigate equal-mass non-spinning binaries with a new 33-orbit NR waveform, as well as unequal-mass binaries with mass ratios 2, 3, 4 and 6. For equal masses, the 33-orbit NR waveform allows us to recover previous results and to extend the analysis toward matching at lower frequencies. For unequal masses, the errors between different PN approximants increase with mass ratio. Thus, at 3.5PN, hybrids for higher-mass-ratio systems would require NR waveforms with many more gravitational-wave (GW) cycles to guarantee no adverse impact on parameter estimation. Furthermore, we investigate the potential improvement in hybrid waveforms that can be expected from 4th order post-Newtonian waveforms, and find that knowledge of this 4th post-Newtonian order would significantly improve the accuracy of hybrid waveforms.Comment: 11 pages, 14 figure

    Discontinuous Galerkin method for the spherically reduced BSSN system with second-order operators

    Get PDF
    We present a high-order accurate discontinuous Galerkin method for evolving the spherically-reduced Baumgarte-Shapiro-Shibata-Nakamura (BSSN) system expressed in terms of second-order spatial operators. Our multi-domain method achieves global spectral accuracy and long-time stability on short computational domains. We discuss in detail both our scheme for the BSSN system and its implementation. After a theoretical and computational verification of the proposed scheme, we conclude with a brief discussion of issues likely to arise when one considers the full BSSN system.Comment: 35 pages, 6 figures, 1 table, uses revtex4. Revised in response to referee's repor
    corecore